Hyponormality and Subnormality for Powers of Commuting Pairs of Subnormal Operators

نویسندگان

  • Raúl E. Curto
  • Sang Hoon Lee
  • Jasang Yoon
چکیده

Let H0 (resp. H∞) denote the class of commuting pairs of subnormal operators on Hilbert space (resp. subnormal pairs), and for an integer k ≥ 1 let Hk denote the class of k-hyponormal pairs in H0. We study the hyponormality and subnormality of powers of pairs in Hk. We first show that if (T1, T2) ∈ H1, the pair (T 2 1 , T2) may fail to be in H1. Conversely, we find a pair (T1, T2) ∈ H0 such that (T 2 1 , T2) ∈ H1 but (T1, T2) / ∈ H1. Next, we show that there exists a pair (T1, T2) ∈ H1 such that Tm 1 T n 2 is subnormal (all m,n ≥ 1), but (T1, T2) is not in H∞; this further stretches the gap between the classes H1 and H∞. Finally, we prove that there exists a large class of 2-variable weighted shifts (T1, T2) ∈ H0, i.e., those whose core is of tensor form (cf. Definition 3.3), for which the subnormality of (T 2 1 , T2) and (T1, T 2 2 ) does imply the subnormality of (T1, T2).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Jointly Hyponormal Pairs of Commuting Subnormal Operators Need Not Be Jointly Subnormal

We construct three different families of commuting pairs of subnormal operators, jointly hyponormal but not admitting commuting normal extensions. Each such family can be used to answer in the negative a 1988 conjecture of R. Curto, P. Muhly and J. Xia. We also obtain a sufficient condition under which joint hyponormality does imply joint subnormality.

متن کامل

The Lifting Problem for Hyponormal Pairs of Commuting Subnormal Operators

We construct three different families of commuting pairs of subnormal operators, jointly hyponormal but not admitting commuting normal extensions. Each such family can be used to answer in the negative a 1988 conjecture of RC, P. Muhly and J. Xia. We also obtain a sufficient condition under which joint hyponormality does imply joint subnormality. Our tools include the use of 2-variable weighted...

متن کامل

Existence of Non-subnormal Polynomially Hyponormal Operators

In 1950, P. R. Halmos, motivated in part by the successful development of the theory of normal operators, introduced the notions of subnormality and hyponormality for (bounded) Hilbert space operators. An operator T is subnormal if it is the restriction of a normal operator to an invariant subspace; T is hyponormal if T*T > TT*. It is a simple matrix calculation to verify that subnormality impl...

متن کامل

k-HYPONORMALITY OF POWERS OF WEIGHTED SHIFTS VIA SCHUR PRODUCTS

Let H be a separable, infinite dimensional complex Hilbert space and let B(H) be the algebra of bounded linear operators on H. An operator T∈ B(H) is said to be normal if T ∗T = TT ∗, subnormal if T is the restriction of a normal operator (acting on a Hilbert space K ⊇ H) to an invariant subspace, and hyponormal if T ∗T ≥ TT ∗. The Bram-Halmos criterion for subnormality states that an operator ...

متن کامل

Hyponormality and Subnormality of Block Toeplitz Operators

In this paper we are concerned with hyponormality and subnormality of block Toeplitz operators acting on the vector-valued Hardy space H Cn of the unit circle. Firstly, we establish a tractable and explicit criterion on the hyponormality of block Toeplitz operators having bounded type symbols via the triangularization theorem for compressions of the shift operator. Secondly, we consider the gap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006